Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226976

RESUMEN

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Humanos , Receptores ErbB , Tejido Adiposo , Ciclo Celular
2.
Acta Neuropathol Commun ; 11(1): 147, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697350

RESUMEN

TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.


Asunto(s)
Glioblastoma , Glioma , Células Madre Mesenquimatosas , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Macrófagos Asociados a Tumores , Macrófagos , Receptores de GABA/genética
3.
Cells ; 12(14)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508520

RESUMEN

Conventional 2D cultures are commonly used in cancer research though they come with limitations such as the lack of microenvironment or reduced cell heterogeneity. In this study, we investigated in what respect a scaffold-based (Matrigel™) 3D culture technique can ameliorate the limitations of 2D cultures. NGS-based bulk and single-cell sequencing of matched pairs of 2D and 3D models showed an altered transcription of key immune regulatory genes in around 36% of 3D models, indicating the reoccurrence of an immune suppressive phenotype. Changes included the presentation of different HLA surface molecules as well as cellular stressors. We also investigated the 3D tumor organoids in a co-culture setting with tumor-infiltrating lymphocytes (TILs). Of note, lymphocyte-mediated cell killing appeared less effective in clearing 3D models than their 2D counterparts. IFN-γ release, as well as live cell staining and proliferation analysis, pointed toward an elevated resistance of 3D models. In conclusion, we found that the scaffold-based (Matrigel™) 3D culture technique affects the transcriptional profile in a subset of GBM models. Thus, these models allow for depicting clinically relevant aspects of tumor-immune interaction, with the potential to explore immunotherapeutic approaches in an easily accessible in vitro system.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Inmunosupresores/uso terapéutico , Fenotipo , Microambiente Tumoral
4.
Acta Neuropathol Commun ; 11(1): 75, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158962

RESUMEN

Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Factor de Necrosis Tumoral alfa , Encéfalo , Linfocitos T CD8-positivos , Neoplasias Encefálicas/genética , Receptores de GABA/genética
5.
Eur Arch Otorhinolaryngol ; 280(6): 2937-2944, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36856809

RESUMEN

BACKGROUND: Adenoid cystic carcinoma (ACC) is a rare type of cancer commonly occurring in salivary glands. It is characterized by slow but infiltrative growth, nerve infiltration and overall poor prognosis, with late recurrence and distant metastasis. The treatment of ACC is still limited to surgery and/or (adjuvant) radiotherapy. Till now no promising systemic therapy option exists. However, various studies deliver promising results after treatment with anti-angiogenetic agents, such as anti-EGFR-antibody Cetuximab or Tyrosinkinase inhibitor Lenvatinib. METHODS: By using of immunohistological methods we analyzed and compared the macrophage and lymphocyte populations, vascularization, and PD-L1-status in 12 ACC of the salivary glands. RESULTS: All cases showed a significant elevation of macrophages with M2 polarization and a higher vascularization in ACC compared to normal salivary gland tissue. The CD4/CD8 quotient was heterogenous. ACC does not show relevant PD-L1 expression. CONCLUSIONS: The predominant M2 polarization of macrophages in ACC could be responsible for elevated vascularization, as already been proved in other cancer types, that M2 macrophages promote angiogenesis.


Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias de las Glándulas Salivales , Humanos , Carcinoma Adenoide Quístico/patología , Antígeno B7-H1 , Proyectos Piloto , Neoplasias de las Glándulas Salivales/patología , Glándulas Salivales/patología , Neovascularización Patológica
6.
Front Oncol ; 13: 1107484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776340

RESUMEN

Introduction: The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods: Experiments were performed with different LDL dosages (LDLlow = 50 µg/ml and LDLhigh = 200 µg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results: The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion: Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.

7.
Cancers (Basel) ; 15(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36765630

RESUMEN

A20, known as a potent inhibitor of NF-κB signaling, has been characterized in numerous clinical as well as preclinical studies. Recently, especially in various malignant diseases, the prognostic and therapeutic relevance of A20 was investigated. In oral squamous cell carcinoma (OSCC) however, the characterization of A20 is uncharted territory. We analyzed a tissue microarray (TMA) of 229 surgically-treated OSCC patients (2003-2013). Immunohistochemical (IHC) stainings were performed for A20 and CD3; additionally, standard haematoxylin-eosin staining was applied. IHC findings were correlated with a comprehensive dataset, comprising clinical and pathohistological information. A20 expression was analyzed in tumor cells as well as in tumor infiltrating lymphocytes (TILs) and correlated with the overall survival (OS) and recurrence-free survival (RFS) using uni- and multivariable Cox regression. The median follow-up time was 10.9 years and the A20 expression was significantly decreased in CD3+ TILs compared to mucosa-infiltrating lymphocytes (MILs). In the Kaplan-Meier analyses, higher A20 expression in TILs was correlated with better OS (p = 0.017) and RFS (p = 0.020). In the multivariable survival analysis, A20 overexpression correlated with improved OS (HR: 0.582; 95% CI 0.388-0.873, p = 0.009) and RFS (HR 0.605; 95% CI 0.411-0.889, p = 0.011). Our results indicate a novel prognostic role for A20 in OSCC. Due to its elevated expression in TILs, further research is highly desirable, which therefore could offer new therapeutic opportunities for patients suffering from OSCC.

8.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35606086

RESUMEN

BACKGROUND: Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS: To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS: The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION: Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Apoptosis , Humanos , FN-kappa B/metabolismo , Fosforilación , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
Oncoimmunology ; 11(1): 2066609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35481285

RESUMEN

In patients with melanoma brain metastases (MBM), a combination of radiotherapy (RT) with immune checkpoint inhibitors (ICI) is routinely used. However, the best sequence of radio-immunotherapy (RIT) remains unclear. In an exploratory phase 2 trial, MBM patients received RT (stereotactic or whole-brain radiotherapy depending on the number of MBM) combined with ipilimumab (ipi) ± nivolumab (nivo) in different sequencing (Rad-ICI or ICI-Rad). Comparators arms included patients treated with ipi-free systemic treatment or without RT (in MBM-free patients). The primary endpoints were radiological and immunological responses in the peripheral blood. Secondary endpoints were progression-free survival (PFS) and overall survival (OS). Of 106 screened, 92 patients were included in the study. Multivariate analysis revealed an advantage for patients starting with RT (Rad-ICI) for overall response rate (RR: p = .007; HR: 7.88 (95%CI: 1.76-35.27)) and disease control rate (DCR: p = .036; HR: 6.26 (95%CI: 1.13-34.71)) with a trend for a better PFS (p = .162; HR: 1.64 (95%CI: 0.8-3.3)). After RT plus two cycles of ipi-based ICI in both RIT sequences, increased frequencies of activated CD4, CD8 T cells and an increase in melanoma-specific T cell responses were observed in the peripheral blood. Lasso regression analysis revealed a significant clinical benefit for patients treated with Rad-ICI sequence and immunological features, including high frequencies of memory T cells and activated CD8 T cells in the blood. This study supports increasing evidence that sequencing RT followed by ICI treatment may have better effects on the immunological responses and clinical outcomes in MBM patients.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/radioterapia , Humanos , Ipilimumab/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/radioterapia , Supervivencia sin Progresión , Radioinmunoterapia
10.
Sci Adv ; 8(12): eabh4050, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35319989

RESUMEN

Radiotherapy is a mainstay cancer therapy whose antitumor effects partially depend on T cell responses. However, the role of Natural Killer (NK) cells in radiotherapy remains unclear. Here, using a reverse translational approach, we show a central role of NK cells in the radiation-induced immune response involving a CXCL8/IL-8-dependent mechanism. In a randomized controlled pancreatic cancer trial, CXCL8 increased under radiotherapy, and NK cell positively correlated with prolonged overall survival. Accordingly, NK cells preferentially infiltrated irradiated pancreatic tumors and exhibited CD56dim-like cytotoxic transcriptomic states. In experimental models, NF-κB and mTOR orchestrated radiation-induced CXCL8 secretion from tumor cells with senescence features causing directional migration of CD56dim NK cells, thus linking senescence-associated CXCL8 release to innate immune surveillance of human tumors. Moreover, combined high-dose radiotherapy and adoptive NK cell transfer improved tumor control over monotherapies in xenografted mice, suggesting NK cells combined with radiotherapy as a rational cancer treatment strategy.


Asunto(s)
Interleucina-8 , Células Asesinas Naturales , Neoplasias , Traslado Adoptivo , Animales , Humanos , Inmunidad , Interleucina-8/inmunología , Interleucina-8/metabolismo , Células Asesinas Naturales/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/radioterapia , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncoimmunology ; 11(1): 2008110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141051

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a cell surface receptor, is expressed on normal epithelial tissue and highly expressed in cancers of high unmet medical need, such as non-small cell lung, pancreatic, and colorectal cancer. CEACAM receptors undergo homo- and heterophilic interactions thereby regulating normal tissue homeostasis and angiogenesis, and in cancer, tumor invasion and metastasis. CEACAM6 expression on malignant plasma cells inhibits antitumor activity of T cells, and we hypothesize a similar function on epithelial cancer cells. The interactions between CEACAM6 and its suggested partner CEACAM1 on T cells were studied. A humanized CEACAM6-blocking antibody, BAY 1834942, was developed and characterized for its immunomodulating effects in co-culture experiments with T cells and solid cancer cells and in comparison to antibodies targeting the immune checkpoints programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and T cell immunoglobulin mucin-3 (TIM-3). The immunosuppressive activity of CEACAM6 was mediated by binding to CEACAM1 expressed by activated tumor-specific T cells. BAY 1834942 increased cytokine secretion by T cells and T cell-mediated killing of cancer cells. The in vitro efficacy of BAY 1834942 correlated with the degree of CEACAM6 expression on cancer cells, suggesting potential in guiding patient selection. BAY 1834942 was equally or more efficacious compared to blockade of PD-L1, and at least an additive efficacy was observed in combination with anti-PD-1 or anti-TIM-3 antibodies, suggesting an efficacy independent of the PD-1/PD-L1 axis. In summary, CEACAM6 blockade by BAY 1834942 reactivates the antitumor response of T cells. This warrants clinical evaluation.


Asunto(s)
Antígenos CD , Neoplasias , Receptor de Muerte Celular Programada 1 , Antígenos CD/inmunología , Antígeno B7-H1/inmunología , Moléculas de Adhesión Celular/inmunología , Proteínas Ligadas a GPI/inmunología , Humanos , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T
12.
J Immunol Methods ; 496: 113086, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146580

RESUMEN

Rare subpopulations of tumor antigen-reactive memory T cells, which actively secrete type-1 effector cytokines, particularly TNF-α in situ, possess anti-tumor activity and prognostic relevance. These cells are relevant for cancer immunotherapy; however, their low frequencies make them difficult to study and novel protocols for their culture and expansion ex vivo are needed. Here, we studied the presence of T cells secreting type-1 cytokines (Cy+T cells) in the blood and tumors of 24 patients with oral squamous cell carcinomas (OSCC) and explored possibilities for their isolation and expansion. More than 90% of OSCC patients contained enriched numbers Cy+T cells in the blood and tumors compared to healthy donors in which these were hardly detectable. The majority of TNF-α+T cells were CD4+ T helper cells while IFN-γ+TIL were predominantly CD8+. Cy+T helper cells in the blood were early-differentiated memory T cells while Cy+TIL and Cy+CD8+T cells showed advanced-differentiated memory T cell phenotypes. We explored different conditions for their in vitro culture and found that Cy+T cells can be efficiently expanded in vitro to similar levels as Cy-T cells and after expansion maintained their TNF-α secreting capacity. However, for optimal expansion they required specific culture conditions to support the maintenance of stem-like and central memory T cell phenotype. In conclusion, we show that Cy+T cells are enriched in OSCC patients and report a novel cell culture protocol optimized to specifically expand and functionally maintain these cells for further functional characterization or for their exploitation in immunotherapy of OSCC.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Boca/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Anciano , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Separación Celular , Células Cultivadas , Femenino , Humanos , Memoria Inmunológica , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/sangre , Neoplasias de la Boca/patología , Fenotipo , Carcinoma de Células Escamosas de Cabeza y Cuello/sangre , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Linfocitos T Colaboradores-Inductores/metabolismo
13.
Vaccine ; 39(33): 4742-4750, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34049733

RESUMEN

Allogeneic hematopoietic stem cell transplantation (alloHSCT) results in a loss of humoral immunity and subsequent risk for severe infections. Thus, re-vaccination is required but may fail due to incomplete immune reconstitution. We retrospectively analyzed predictors of immune response to primary vaccination applied according to the EBMT (European Blood and Marrow Transplantation Group) recommendations. Serologic response to vaccination against diphtheria (D), tetanus (T), Bordetella pertussis (aP) and Haemophilus influenzae (Hib) (administrated as combined DTaP-Hib-IPV vaccination) was studied in 84 alloHSCT patients transplanted between 2008 and 2015 (age at alloHSCT: 18.6-70.6 years). All patients with a relapse-free survival of ≥9 months, at least 3 consecutive vaccinations and absence of intravenous immunoglobulin administration within 3 months before and after vaccination met the primary inclusion criteria. Additionally, immunological response to a pneumococcal conjugate vaccine was analyzed in a subgroup of 67 patients. Patients' characteristics at the time of first vaccination were recorded. Responses were measured as vaccine-specific antibody titers. Regarding DTaP-Hib-IPV vaccination, 89.3% (n = 75) of all patients achieved protective titers to at least 3 of the 4 vaccine components and were thus considered responders. 10.7% (n = 9) of the patients were classified as non-responders with positive immune response to less than 3 components. Highest response was observed for Hib (97.4%), tetanus (95.2%) and pneumococcal vaccination (83.6%) while only 68.3% responded to vaccination against Bordetella pertussis. Significant risk factors for failure of vaccination response included low B cell counts (p < 0.001; cut-off: 0.05 B cells/nl) and low IgG levels (p = 0.026; mean IgG of responders 816 mg/dl vs. 475 mg/dl of non-responders). Further, a trend was observed that prior cGvHD impairs vaccination response as 88.9% of the non-responders but only 54.7% of the responders had prior cGvHD (p = 0.073). The results demonstrate, that the currently proposed vaccination strategy leads to seroprotection in the majority of alloHSCT patients.


Asunto(s)
Difteria , Vacunas contra Haemophilus , Trasplante de Células Madre Hematopoyéticas , Adulto , Anticuerpos Antibacterianos , Vacuna contra Difteria, Tétanos y Tos Ferina , Humanos , Lactante , Vacuna Antipolio de Virus Inactivados , Estudios Retrospectivos , Vacunación , Vacunas Combinadas , Vacunas Conjugadas
14.
Nat Commun ; 12(1): 1119, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602930

RESUMEN

Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T Reguladores/inmunología , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Células Clonales , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Activación de Linfocitos/inmunología , Estadificación de Neoplasias , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual , Células TH1/inmunología , Transcriptoma/genética
15.
Cancer Lett ; 499: 209-219, 2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33276040

RESUMEN

Diabetes mellitus type II (DM) and immune cell infiltration determine patient outcome in many tumor entities. Here we studied a possible link between the metabolic and immune cell status of OSCC patients. Glucose transporter (GLUT) 1 mRNA expression was elevated in all tumor samples, whereas other glycolytic markers such as lactate dehydrogenase (LDH) A or monocarboxylate transporter (MCT) 1 were increased in tumor samples from patients with diabetes and these patients had a significantly worse prognosis compared to non-diabetic patients. Analyses of immune cell infiltration in tumors from diabetic and non-diabetic patients revealed an increased leukocyte (CD45+) infiltration compared to normal mucosa only in non-diabetic patients. In line, the amount of CD3+ T cells per mm2 tumor tissue, was elevated in patients without diabetes and crucial for patient outcome in OSCC patients without diabetes, as compared to healthy mucosa using fluorescence immunohistochemistry in tissue microarrays of 229 patients. Our results demonstrate that diabetes is a prognostic factor for OSCC patients and associates with decreased leukocyte and CD3+ infiltration indicating that metabolic differences between diabetic and non-diabetic patients may alter tumor-infiltrating T cells and thereby determine patient outcome.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Boca/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Linfocitos T/inmunología , Adulto , Complejo CD3/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mucosa Bucal/inmunología , Mucosa Bucal/patología , Mucosa Bucal/cirugía , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/cirugía , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Simportadores/metabolismo , Linfocitos T/metabolismo , Efecto Warburg en Oncología
16.
Cancers (Basel) ; 12(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255425

RESUMEN

Spontaneous T cell responses to tumor-associated antigens (TAs) in the peripheral blood of patients with non-small-cell lung cancer (NSCLC) may be relevant for postoperative survival. However, the conditions underlying these T cell responses remain unclear. We quantified the levels of 27 cytokines in the peripheral blood and tumor tissues from treatment-naïve patients with NSCLC (n = 36) and analyzed associations between local and systemic cytokine profiles and both TA-specific T cell responses and clinical parameters. We defined T cell responders as patients with circulating T cells that were reactive to TAs and T cell nonresponders as patients without detectable TA-specific T cells. TA-specific T cell responses were correlated with serum cytokine levels, particularly the levels of interleukin(IL)-4 and granulocyte colony-stimulating factor (G-CSF), but poorly correlated with the cytokine levels in tumor tissues. Nonresponders showed significantly higher serum IL-4 levels than responders (p = 0.03); the predicted probability of being a responder was higher for individuals with low serum IL-4 levels. In multivariable Cox regression analyses, in addition to IL-4 (hazard ratio (HR) 2.8 (95% confidence interval (CI): 0.78-9.9); p = 0.116), the age-adjusted IL-8 level (HR 3.9 (95% CI: 1.05-14.5); p = 0.042) predicted tumor recurrence. However, this study included data for many cytokines without adjustment for multiple testing; thus, the observed differences in IL-4 or IL-8 levels might be incidental findings. Therefore, additional studies are necessary to confirm these results.

17.
Cancers (Basel) ; 12(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066460

RESUMEN

Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.

18.
Exp Cell Res ; 396(1): 112259, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898555

RESUMEN

High expression of the immune checkpoint receptor PD-L1 is associated with worse patient outcome in a variety of human cancers, including head and neck squamous cell carcinoma (HNSCC). Binding of PD-L1 with its partner PD-1 generates an inhibitory signal that dampens the immune system. Immunotherapy, that is blocking the PD-1/PD-L1 checkpoint, has proven to be an effective tool in cancer therapy. However, not all patients are able to benefit from this immune checkpoint inhibition. Therefore, evidence is growing of intrinsic PD-L1 signaling in cancer cells. For example, intrinsic PD-L1 expression was associated with PI3K/Akt/mTOR signaling, which is part of diverse oncogenic processes including cell proliferation, growth and survival. In this study we demonstrate the effects of PI3K/Akt/mTOR pathway inhibition by buparlisib on PD-L1 expression in HNSCC cell lines. After buparlisib treatment for 72 h, PD-L1 was downregulated in total cell lysates of HNSCC cells. Moreover, flow cytometry revealed a downregulation of PD-L1 membrane expression. Interestingly, the buparlisib mediated effects on PD-L1 expression were reduced by additional irradiation. In PD-L1 overexpressing cells, the buparlisib induced inhibition of proliferation was neutralized. In summary, our findings imply that blocking the PI3K/Akt/mTOR pathway could be a good additional therapy for patients who show poor response to immune checkpoint therapy.


Asunto(s)
Aminopiridinas/farmacología , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/genética , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Morfolinas/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/efectos de la radiación , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Radiación no Ionizante , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología
19.
Cancer Immunol Res ; 8(9): 1163-1179, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32665263

RESUMEN

The success of cancer immunotherapy is limited by resistance to immune checkpoint blockade. We therefore conducted a genetic screen to identify genes that mediated resistance against CTLs in anti-PD-L1 treatment-refractory human tumors. Using PD-L1-positive multiple myeloma cells cocultured with tumor-reactive bone marrow-infiltrating CTL as a model, we identified calcium/calmodulin-dependent protein kinase 1D (CAMK1D) as a key modulator of tumor-intrinsic immune resistance. CAMK1D was coexpressed with PD-L1 in anti-PD-L1/PD-1 treatment-refractory cancer types and correlated with poor prognosis in these tumors. CAMK1D was activated by CTL through Fas-receptor stimulation, which led to CAMK1D binding to and phosphorylating caspase-3, -6, and -7, inhibiting their activation and function. Consistently, CAMK1D mediated immune resistance of murine colorectal cancer cells in vivo The pharmacologic inhibition of CAMK1D, on the other hand, restored the sensitivity toward Fas-ligand treatment in multiple myeloma and uveal melanoma cells in vitro Thus, rapid inhibition of the terminal apoptotic cascade by CAMK1D expressed in anti-PD-L1-refractory tumors via T-cell recognition may have contributed to tumor immune resistance.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/trasplante , Animales , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/inmunología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/biosíntesis , Resistencia a Antineoplásicos , Humanos , Ratones , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...